The Relationship between Biofilm and Physical-Chemical Properties of Implant Abutment Materials for Successful Dental Implants
نویسندگان
چکیده
The aim of this review was to investigate the relationship between biofilm and peri-implant disease, with an emphasis on the types of implant abutment surfaces. Individuals with periodontal disease typically have a large amount of pathogenic microorganisms in the periodontal pocket. If the individuals lose their teeth, these microorganisms remain viable inside the mouth and can directly influence peri-implant microbiota. Metal implants offer a suitable solution, but similarly, these remaining bacteria can adhere on abutment implant surfaces, induce peri-implantitis causing potential destruction of the alveolar bone near to the implant threads and cause the subsequent loss of the implant. Studies have demonstrated differences in biofilm formation on dental materials and these variations can be associated with both physical and chemical characteristics of the surfaces. In the case of partially edentulous patients affected by periodontal disease, the ideal type of implant abutments utilized should be one that adheres the least or negligible amounts of periodontopathogenic bacteria. Therefore, it is of clinically relevance to know how the bacteria behave on different types of surfaces in order to develop new materials and/or new types of treatment surfaces, which will reduce or inhibit adhesion of pathogenic microorganisms, and, thus, restrict the use of the abutments with indication propensity for bacterial adhesion.
منابع مشابه
Evaluating the impact of length and thread pitch on the stress distribution in dental implants and surrounding bone using finite element method
longevity of osseointegrated implants are intensely influenced by biomechanical factors. Control of these factors prevents mechanical complications, which include fracture of screws, components, or materials veneering the framework. In this study, the impact of length and threads pitch of dental implants on the stress distribution and maximum Von Mises stress in implant-abutment complex and ja...
متن کاملBiologic Width around Dental Implants: An Updated Review
Soft tissue-implant interface is an important anatomical feature contributing to the long-term success of dental implants. Based on the available evidence, different factors may influence biological width around implants including the surgical technique, implant loading, implant surface properties, abutment materials, implant position, and width of the peri-implant mucosa. The purpose of the pr...
متن کاملEffect of Abutment Height Difference on Stress Distribution in Mandibular Overdentures: A Three-Dimensional Finite Element Analysis
Background and Aim: Implant-supported overdentures are a treatment option for edentulous patients. One of the important factors in determining the prognosis of overdenture treatment is to control the distribution of stress in the implant-bone and attachment complex. This study assessed the effect of implant abutment height difference on stress distribution in mandibular overdentures. Materials...
متن کاملImmediate loading in dental implants ( A literature review )
Immediate loading in dental implants ( A literature review ) Dr. Seyedan K.,1 Dr. Hafezeqoran A.,2 Dr. Sazgara H.3 1Assistant Professor, Department of Prosthodentists,Dental School Shahid Beheshti University of Medical Sciences,Tehran, Iran.2Dentist, Post Graduate Student, Department of Prosthodontics, Dental School, Shahid Beheshti University of Medical Sciences, Tehran-Iran.3Associate Profess...
متن کاملEffect of Abutment Angulation and Material on Stress and Strain Distributions in Premaxillary Bone: A Three-Dimensional Finite Element Analysis
Background and Aim: Dental implants with angled abutments are often inserted in the anterior maxillary region due to the status of the residual ridge and aesthetic considerations. The purpose of this study was to assess stress and strain distributions in the premaxillary bone around dental implants by means of finite element analysis (FEA). Materials and Methods: Four three-dimensional (3D) fi...
متن کامل